Search results for " Self-assembly"

showing 10 items of 74 documents

Carboxylated-xyloglucan and peptide amphiphile co-assembly in wound healing.

2021

Abstract Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low c…

Circular dichroismHYDROGELSwound healingSCAFFOLDSskin tissue engineeringBiomaterialsExtracellular matrixchemistry.chemical_compoundTissue engineeringDESIGNCIRCULAR-DICHROISM SPECTRAPeptide amphiphileABSORPTIONFORMULATIONSRELEASETEMPO-MEDIATED OXIDATIONintegumentary systemself-assemblyXyloglucanSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPOLYSACCHARIDEchemistrypeptide nanofiberSelf-healing hydrogelsBiophysicsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assemblyAcademicSubjects/SCI01410MEMBRANEhydrogelWound healingAcademicSubjects/MED00010Hydrogel Peptide nanofiber Self-assembly Skin tissue engineering Wound healingResearch ArticleRegenerative biomaterials
researchProduct

Guided hierarchical co-assembly of soft patchy nanoparticles.

2013

Different polymers can be used in combination to produce coexisting nanoparticles of different symmetry and tailored to co-assemble into well-ordered binary and ternary hierarchical structures. There is considerable practical interest in developing the tools to fabricate multicomponent artificial systems that mimic the hierarchical ordering seen in the natural world — complex biomaterials can be assembled from the simple but precisely defined molecular building blocks. Andre Groschel and colleagues have developed a bottom-up approach that's a step in that direction. Previously they designed simple linear polymers that self-assemble in solution to produce monodisperse nanoparticles with well…

Length scaleMultidisciplinaryMaterials scienceMicrocontact printingMolecular self-assemblyParticleNanoparticleNanotechnologySelf-assemblyTernary operationSmart materialNature
researchProduct

Nanowire iron(III) coordination polymer based on 1,2,4-triazolo[1,5-a]pyrimidine and chloride ligands

2019

Abstract The neutral ligand 1,2,4-triazolo[1,5-a]pyrimidine (tp) has been employed to prepare a new coordination compound of Fe(III), [FeCl3(tp)2]n (1). Compound 1 was investigated by single crystal X-ray diffraction and found to be a coordination polymer forming a ladder structure based on metal–ligand interactions, while H-bonding and aromatic interactions contribute to the supramolecular self-assembly into a 3D nanostructured material. The polymeric assembly is retained also in solution, where a metallo-supramolecular polymer based on coordinative metal–ligand binding is present, as shown by dynamic light scattering (DLS) measurements. The redox properties of the Fe(III) coordination pol…

Cyclic voltammetryCoordination polymer124-Triazolo[15-a]pyrimidineSupramolecular chemistry010402 general chemistry01 natural sciencesCoordination complexInorganic Chemistrychemistry.chemical_compoundDynamic light scatteringSolid state structureMaterials ChemistryPhysical and Theoretical Chemistrychemistry.chemical_classification010405 organic chemistryLigandSelf-assemblyPolymer0104 chemical sciencesCrystallographyScanning probe microscopychemistrySettore CHIM/03 - Chimica Generale E Inorganica124-Triazolo[15-a]pyrimidine Solid state structure Cyclic voltammetry Self-assembly Scanning probe microscopySelf-assemblySingle crystalPolyhedron
researchProduct

Molecular devices for nanoelectronics and plasmonics

2009

This thesis is focused on fabrication and characterization of molecular devices. In connection with molecular electronics the dielectrophoresis based method for trapping and attaching nanoscale double-stranded DNA between nanoelectrodes was developed. Moreover, the method was extended to self-assembled DNA nanostructures. The method allowed to obtain valuable information about electrical and dielectrophoretic properties of DNA. In addition, two general approaches to the utilization of DNA origami structures for the assembly of materials are described and experimentally demonstrated. In context of molecular plasmonics, a novel lithographic fabrication method for positioning dye molecules on …

DNA self-assemblydielectrophoresissurface plasmonstechnology industry and agricultureDNAdyes
researchProduct

Definition of the chalcogen bond (IUPAC Recommendations 2019)

2019

Abstract This recommendation proposes a definition for the term “chalcogen bond”; it is recommended the term is used to designate the specific subset of inter- and intramolecular interactions formed by chalcogen atoms wherein the Group 16 element is the electrophilic site.

chalcogen bond; IUPAC Organic and Biomolecular Chemistry Division; IUPAC Physical and Biophysical Chemistry Division; nomenclature; noncovalent interactions; self-assembly; supramolecular chemistryGeneral Chemical EngineeringChemical nomenclature010402 general chemistrynoncovalent interaction01 natural sciencessupramolecular chemistrykemialliset sidoksetnoncovalent interactionsChalcogenGroup (periodic table)supramolekulaarinen kemiaNon-covalent interactionsIUPAC Organic and Biomolecular Chemistry DivisionIUPAC Physical and Biophysical Chemistry Divisionchalcogen bondchemistry.chemical_classification010405 organic chemistryChemistryBondSolid State & Structural Chemistry Unitself-assemblyGeneral Chemistry0104 chemical sciencesTerm (time)ChemistryCrystallographyIntramolecular forcenimikkeistötnomenclaturePure and Applied Chemistry
researchProduct

Template-Free Supracolloidal Self-Assembly of Atomically Precise Gold Nanoclusters : From 2D Colloidal Crystals to Spherical Capsids

2016

We report supracolloidal self-assembly of atomically precise and strictly monodisperse gold nanoclusters involving p-mercaptobenzoic acid ligands (Au102-pMBA44) under aqueous conditions into hexagonally packed monolayer-thick two-dimensional facetted colloidal crystals (thickness 2.7 nm) and their bending to closed shells leading to spherical capsids (d ca. 200 nm), as controlled by solvent conditions. The 2D colloidal assembly is driven in template-free manner by the spontaneous patchiness of the pMBA ligands around the Au102-pMBA44 nanoclusters preferably towards equatorial plane, thus promoting inter-nanocluster hydrogen bonds and high packing to planar sheets. More generally, the findin…

Materials scienceta221DispersityNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryNanoclustersColloidgoldnanoclusterssupramolekulaarinen kemiaGold nanoclustersta116colloid self-organizationTemplate freeAqueous solutionvetysidoksetta114Hydrogen bondColloidal self-assemblyGeneral ChemistryGeneral MedicineColloidal crystal021001 nanoscience & nanotechnology0104 chemical scienceshydrogen bondscolloidal crystalsSelf-assembly0210 nano-technology
researchProduct

Insights into the effect of the spacer on the properties of imidazolium based AIE luminogens

2021

Abstract With the aim to obtain organic salts with potential applications in high performance molecular electronics, we combined properties of π-conjugated spacers, like 1,4-diethynylbenzene and 1,6-diethynylpyrene, with the ones of both imidazole and imidazolium units. Physico-chemical properties of obtained fluorescent organic salts were investigated performing thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and cyclic voltammetry measurements (CV). Photophysical behavior of the salts was analyzed in conventional solvents and ionic liquids, by UV–vis and fluorescence investigation. Solution phase aggregation study revealed that these salts self-assemble in conve…

Materials scienceProcess Chemistry and TechnologyGeneral Chemical Engineeringaggregation induced emission; imidazolium salts; self-assemblySupramolecular chemistryMolecular electronicsSettore CHIM/06 - Chimica Organicaself-assembly02 engineering and technologyimidazolium salts010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescenceaggregation induced emission0104 chemical scienceschemistry.chemical_compoundDifferential scanning calorimetrychemistryChemical engineeringIonic liquidImidazoleSelf-assemblyCyclic voltammetry0210 nano-technologyDyes and Pigments
researchProduct

Molecular Self-Assembly in a Family of Oxo-Bridged Dinuclear Ruthenium(IV) Systems

2020

A series of six novel RuIV compounds of formula (H2bpy)2[{RuCl5}2(μ-O)] (1), (PPh4)2[{RuCl4(H2O)}2(μ-O)]·4H2O (2), (PPh4)2[{RuCl4(MeCN)}2(μ-O)] (3), (PPh4)2[{RuCl4(dmf)}2(μ-O)] (4), (PPh4)2[{RuCl4(...

Crystallography010405 organic chemistryChemistrychemistry.chemical_elementMolecular self-assemblyGeneral Materials ScienceGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical sciencesRutheniumCrystal Growth & Design
researchProduct

Mesoscopic structural organization in fluorinated room temperature ionic liquids

2018

The presence of fluorous tails in room-temperature ionic liquids imparts new properties to their already rich spectrum of appealing features. The interest towards this class of compounds that are of ionic nature with melting point less than 25 degrees C is accordingly growing; in particular, compounds bearing relatively long fluorous tails have begun to be considered. In this invited presentation, we show recent results arising from the systematic study of structural properties of a series of fluorinated room temperature ionic liquids, with growing fluorous chain length. At odd with the current understanding of this class of compounds, we show experimentally that they are characterized by t…

Materials scienceGeneral Chemical EngineeringIonic bondingNeutronNeutron scatteringIonic liquid010402 general chemistry01 natural sciencesX-raychemistry.chemical_compoundMolecular dynamicsSettore CHIM/020103 physical sciencesFluorouMesoscopicChemical Engineering (all)Nanoscopic scaleFluorous; Ionic liquid; Mesoscopic; Neutron; Self-assembly; X-ray; Chemistry (all); Chemical Engineering (all)Mesoscopic physics010304 chemical physicsChemistry (all)General ChemistrySelf-assembly0104 chemical sciencesFluorous; Ionic liquid; X-ray; Neutron; Mesoscopic; Self-assemblychemistryChemical physicsIonic liquidMelting pointFluorousSelf-assembly
researchProduct

How deprotonation changes molecular self-assembly – an AFM study in liquid environment

2013

We study the influence of Alizarin Red S deprotonation on molecular self-assembly at the solid-liquid interface of the natural cleavage plane of calcite immersed in aqueous solution. To elucidate the adsorption details, we perform pH dependent high-resolution atomic force microscopy measurements. When Alizarin Red S is deposited onto calcite(10.4) in a liquid environment at an acidic pH of 5, weakly bound, ordered islands with a (3 x 3) superstructure are observed. A sharp structural transition is revealed when increasing the pH above 8. Above this pH, stable needle-like structures oriented along the [01.0] direction form on the surface. Comparing these results with potentiometric titration…

SuperstructureAqueous solutionChemistryPotentiometric titrationInorganic chemistryALIZARIN REDProtonationGeneral ChemistryCondensed Matter Physics530CrystallographyDeprotonationAdsorptionMolecular self-assemblySoft Matter
researchProduct